Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae.

نویسندگان

  • Elisa Cabiscol
  • Gemma Bellí
  • Jordi Tamarit
  • Pedro Echave
  • Enrique Herrero
  • Joaquim Ros
چکیده

In the present study, we have analyzed the role of the molecular chaperone Hsp60 in protection of Saccharomyces cerevisiae against oxidative damage. We constructed mutant strains in which the levels of Hsp60 protein, compared with wild-type cells, were four times greater, and the addition of doxycycline gradually reduces them to 20% of wild-type. Under oxidative-stress conditions, the progressive decrease in Hsp60 levels in these mutants resulted in reduced cell viability and an increase in both cell peroxide species and protein carbonyl content. Protection of Fe/S-containing enzymes from oxidative inactivation was found to be dose-dependent with respect to Hsp60 levels. As these enzymes release their iron ions under oxidative-stress conditions, the intracellular labile iron pool, monitored with calcein, was higher in cells with reduced Hsp60 levels. Consistently, the iron chelator deferoxamine protected low Hsp60-expressing cells from both oxidant-induced death and protein oxidation. These results indicate that the role of Hsp60 in oxidative-stress defense is explained by protection of several Fe/S proteins, which prevent the release of iron ions and thereby avert further damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...

متن کامل

Yeast caspase 1 suppresses the burst of reactive oxygen species and maintains mitochondrial stability in Saccharomyces cerevisiae

Caspases are a family of cysteine proteases that play essential roles during apoptosis, and we presume some of them may also protect the cell from oxidative stress. We found that the absence of yeast caspase 1(Yca1)in Saccharomyces cerevisiae leads to a more intense burst of mitochondrial reactive oxygen species (ROS). In addition, compared to wild type yeast cells, the ability of yca1 mutant c...

متن کامل

The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2.

Many metalloproteins have the capacity to bind diverse metals, but in living cells connect only with their cognate metal cofactor. In eukaryotes, this metal specificity can be achieved through metal-specific metallochaperone proteins. Herein, we describe a mechanism whereby Saccharomyces cerevisiae manganese superoxide dismutase (SOD2) preferentially binds manganese over iron based on the diffe...

متن کامل

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae.

Mitochondria require NADPH for anti-oxidant protection and for specific biosynthetic pathways. However, the sources of mitochondrial NADPH and the mechanisms of maintaining mitochondrial redox balance are not well understood. We show here that in Saccharomyces cerevisiae, mitochondrial NADPH is largely provided by the product of the POS5 gene. We identified POS5 in a S.cerevisiae genetic screen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 46  شماره 

صفحات  -

تاریخ انتشار 2002